
WELDED WIRE FENCE SYSTEM

Offering maximum security protection, our unique Super C-Post design provides superior strength perpendicular to the fence line compared to its round competitors. Available in galvanized or PVC coated finishes, our welded wire fence system delivers clean, distortion-free visibility while providing an anti-cut, anti-climb perimeter solution.

gregoryfence.com

MEETS OR EXCEEDS ASTM SPECIFICATIONS

- A123 Zinc coatings on iron and steel
- A653 Steel sheet, zinc-coated or zinc-iron alloy-coated by the hot dip process
- A853 Steel wire, carbon or general use
- A933 Vinyl-coated steel and welded wire reinforcement
- A1011 Steel sheet and strip, hot-rolled, carbon, structural high strength low-alloy with improved formability
- F1043 Strength and protective coatings on fence framework
- A1060 Zinc-coated steel, welded wire reinforcement, plain, deformed and concrete
- A1064 Steel wire and welded wire reinforcement, plain, deformed and concrete
- F2453 Welded wire mesh fabric (metalliccoated or polymer-coated), meshes of 6 in.² (3,871 mm²) or less, in panels or rolls, with uniform meshes

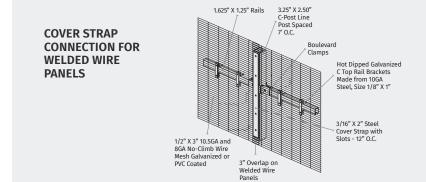
CERTIFIED FOR EXCELLENCE

Prevent intrusions. Secure assets. Maintain visibility.

PRODUCT FEATURES

- Super C-Posts with .130 wall thickness use 60,000 lb. minimum yield steel
- Super C-Posts with .150 wall thickness use 60,000 lb. minimum yield steel
- Continuously coated with 4 oz. of zinc per square ft., per ASTM-F1043
- Systems are available in a galvanized or PVC coated finish
- Each panel is 87 in. wide
- Available in heights of 8 ft., 9 ft., 10 ft. and 12 ft. that can be stacked
- Mesh spacing is 1/2 in. (vertical) by 3 in. (horizontal) center to center of wires before coatings are applied
- Low noise and limited wind-base movement
- Will not unravel or lose integrity, even if cut
- Can be electrified or buried
- The framework's open channel allows for inside placement of communication cables, electrical or access control wiring
- Systems are proudly made in the U.S.

SUPER C STRENGTH COMPARISON


Line Posts	Outside	Material	Weight	Section	Min. Yield	Beam
	Dimensions	Thickness	Per Ft.	Modules*	Strength	Load**
Super C (.150)	3.25" x 2.5"	.150	5.40	1.260	60,000	1050*
4" O.D. SCH 40		.226	9.11	2.394	30,000	998
Super C (.130)	3.25" x 2.5"	.130	4.50	1.083	60,000	902*
2.875" O.D. SCH 40		.203	5.79	1.064	30,000	443
	1.625" x 1.25"	.080	1.35	.158	50,000	263***
	1.66	.140	2.27	.235	30,000	98

* Critical axis perpendicular to fence line

* Theoretical beam loads were computed as follows: Yield strength X section modulus divided by the height in inches (cantilever beam load 72")

*** Yield strength X section modulus X 4 divided* by length in inches (simple beam load 120")

For AUTO CAD drawings or architectural and engineering specifications, visit our website.

